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Research Papers 
Some geometrical considerations concerning the 
design of tablets 
J. P. CLEAVE 

A theoretical examination of designs best suited to give a uniform rate of release of 
materials from solution tablets is presented. 

HERE are circumstances in medical and industrial practice where T solid material in the form of tablets has to pass into solution rather 
than to disintegrate. In certain circumstances it is desirable that the 
material should be released at  a uniform rate. The purpose of this paper 
is to examine the theoretical considerations which underly the choice of 
a design to achieve this object. 

Let a tablet be immersed in a fluid: consider a small region ABCD of 
area As on the surface of the tablet (Fig. 1). In a small interval of time 

FIG. 1. 

At a volume uAs At of the tablet in the form of a layer ABCDA’B’C’D’, 
where AA‘ = BB‘ = CC’ = DD’ = aAt(AA‘, BB’, CC’, DD’ perpendi- 
cular to the plane ABCD) will pass into solution. It will be assumed that 
0 is a constant. This will be (approximately) so if the material of the 
tablet is of uniform composition and if certain obvious conditions on the 
solubility and rate of diffusion and on the relative volumes of tablet and 
fluid are met. Consider, then a tablet in the form of a parallelipiped, 
ABCDA’B’C’D’ (Fig. 2) with CD = DD’ = I, AD = m. 

FIG. 
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GEOMETRICAL CONSIDERATIONS OF TABLET DESIGN 

From the preceding considerations we infer that in any interval A t  
(preceding the tablet's final disappearance) each dimension of the tablet 
is reduced by a length 2aAt. Hence, if the tablet is placed in fluid at time 
t = 0, at time t it will be reduced to the parallelipiped abcda'b'c'd' (Fig. 2) 
where aa' = AA' - 2ot, ab = AB - 2ot, . . . Hence, supposing m < I, the 
tablet will be completely dissolved when m - 2ot = 0, i.e. at time T = m/2a. 
So by computing surface areas we find that the rate of solution C(t) at 
time t, for t ( 7 ,  is given by 

C(t) = o.21(2m + I) - 802t(m + 21) + 24a3t2 . . (1) 
Fig. 3 shows the graph of C(t). 

0 u t  -r=rn/2u 

FIG. 3. Time variation of rate of solution. 

The noteworthy feature here is that the rate of solution initially drops, the 
tangent to the curve at t = 0 being inclined at an angle 0 to the t-axis, 
where tan0 = 8a2 (m + 21) = coefficient o f t  in C(t). Further it is clear 
that no adjustment of dimensions of the tablet (short of putting m = 1 = 
O!) can make 0 = 0. The mathematical problem we face can now be 
defined. For a given tablet, let C(t) denote the rate of solution at time 
t after first being immersed in fluid and let T denote the time at which the 
tablet is first completely dissolved. Assume that C(t) can be expanded in 
the form 

where *(b(t) = a,t2 + a,t3 + . . . . 
V t )  = V O )  + A1 t + (b(t) . .  * .  (2) 

The constant A, represents the 
dC initial rate of fall of C(t), i.e. tan 0 = - = A,. In general A, is a 
dtt,o 

function of the initial size of the tablet [c.f. (l)]. 
define some shapes of tablet for which A, = 0: then for such shapes 

Thus our problem is to 

X(t) = X(0) + (b(t), &t) = ad2 + a1t3 + . * (3) 

0 T 7 

FIG. 4. Rate of solution of crs-tablets. 

* Note jiC(t)dt = initial volume of tablet 
= area under graph of C(t). 
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Tablets having such a shape we call crs-tablets : the graphs of their rate of 
solution have the form shown in Fig. 4. Of course, in general, the rate 
of change of X(t), even for crs-tablets is non-zero because of the term 
4(t) in (3). Hence as a measure of efficiency, E ,  of a crs-tablet we take 
the proportionate drop in the rate of solution when the tablet is finally 
dissolved, i.e. referring to Fig. 4. 

Thus to get X(t) as nearly constant as possible in a crs-tablet we aim, by 
adjusting the dimensions of the tablet, to make E as small as possible. 

The tablet shown in Fig. 2 is a non crs-tablet because the surface area 
decreases as the tablet dissolves. Our plan is to compensate for this 
decrease by incorporating in the tablet a surface whose area increases. 
Consider a cylindrical hole in a tablet (Fig. 5). If the hole has radius r 

FIG. 5 

at time t, then by the assumptions of the second paragraph, the radius will 
increase to r + oat at t + At. Hence the surface area of the hole will 
increase. We shall therefore consider tablets with holes in them: by 
appropriate choice of dimensions the tablets can be given the desired 
property . 
Crs-tablets 

we consider only tablets in the form of parallelipipeds. 

1 .  

In order to minimise computational complexity in finding surface areas 

One hole tablets (Fig. 6).  

D 

O 
FIG. 6 

Suppose I Gd. Then r = d/2o and 
C(0) = 8(1+ d) (D - d). 
X(t) = E(0) + 3202 (d - D)t for 0 < t < r . * ( 5 )  

(In this instance +(t) = 0, though this is not the case with the following 
examples). Now D > 2d. So comparing (5) and (2) we have A, = 32u2 
(d - D) <O. Thus a one-hole tablet of this type cannot be a crs-tablet. 
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GEOMETRICAL CONSIDERATIONS O F  TABLET DESIGN 

2. Two hole tablets (Fig. 7). 

G 
d B C  

0 
FIG. 7 

Suppose 1 > d, AB = CE. Then D 2 3d, G 
Thus 

2 2d, r = d/2a. 

E(0) = 2~[1(3G + 2D - 7d) + d(3G + 2D - 6d)l 
X(t) = X(0) - 8a2(3G + 2D - I - 7d)t + 2403t2 if 0 < t < T (6) 

Comparing (3) and (6) it can be seen that we can construct a crs-tablet by 
choosing 

The efficiency, by (4) is then, using (7), 

Examples : 

3 G + 2 D = I + 7 d  .. .. * - (7) 

E = 3d2/[(3G + 2D - 7d)2 + d(3G + 2d - 6d)l . . (8) 

1 - 
52' (i) D = 5d, G = 3d. By (7), 1 = 12d; (8) gives E 

1 
(ii) D = 7d, G = 3d. Then I = 16d and E g - 

90' 
Further information can be extracted from (8). In fact we can con- 

struct an upper bound for E .  Define p by (3G + 7d)/d = 12 + p. 
Then since D 2 3d, G > 2d we have p > 0. Further, (8) can be rewritten 
as 

The condition p >, 0 requires that (9) have one positive solution. 
Thus 0 < E < 3/31, 
i.e. it is impossible to get the efficiency worse than 3/31. For any E such 
that 0 < E < 3/31 a positive p can be computed from (9) and hence G, 
D and I can be found. 

3. Three-hole tablets (Fig. 8). 

p2 + l l p  + (31 - 3 / ~ )  = 0 .. * * (9) 

0 
FIG. 8 
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Suppose 1 > d, AB = CE, EF = HJ. Then G > 3d, D > 3d, r = d/2a. 
Hence, 

C(t) = C(0) - 402(6G + 5D - 19d - 41)t - 4803t2 for 0 < t < r 
By putting 

in (10) we have a crs-tablet whose efficiency, by (4) and (1 1) is 

Examples : 

C(0) = ~[1(6G + 5D - 19d) + d(6G + 5D - 15d)l 
(10) 

6G + 5D = 41 + 19d . . .. .. (11) 

E = 48d2/[(6G + 5D - 19d)2 + 4d(6G + 5D - 15d)l (12) 

(i) G = 5d, D = 5d. By (11), 1 = 9d. By (12), E z 1/33. 
(ii) G = 5d, D = 7d. Then 1 = 23d/2 so that E z 1/48. 

Next, by imposing the conditions G, D > 3d on (12) we get 

4. Four-hole tablet (Fig. 9). 
0 < E < 12/77. 

0 
FIG. 9 

Suppose 1 > d, AB = CE, EF = HJ. Then D, G 2 3d, r = d/2o. 
Z(0) = 6~[ l (D  + G - 4d) + d(D + G - 3d)l 
Z(t) = Z(0) - 2402(D + G - 4d - 1)t - 7203t2 for 0 < t < T. 

If 
we have a crs-tablet whose efficiency is given by 

Examples : 

D + G = 4d + 1 

= 3d2/[(D + G - 4d)2 + d(D + G - 3d)l . . (13) 

(i) G = 5d, D = 5d; I = 6d and E z 1/14. 
(ii) G = 7d, D = 5d; I = 8d and E 1/24. 

(iii) G = 9d, D = 5d; I = 10d and E z 1/36. 
Finally, the conditions D, G > 3d and (13) require 

0 < E < 317. 

Conclusion 
Crs-tablets can be constructed with two or more holes-a single hole is 

unable to compensate the decrease in the outer surface area. The 2, 3, 
4-hole csr-tablets have a natural ratio above which the proportionate 

decrease in the rate of solution cannot rise ; - - - respectively. If we 

take these as figures of merit we see that the two-hole tablet is basically a 
better structure than the others. 
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